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Abstract 
The present paper deals with a weak nonlinear stability problem of magneto-convection in an electrically 

conducting Newtonian liquid, confined between two horizontal surfaces, under a constant vertical magnetic 

field, and subjected to an imposed time-periodic boundary temperature (ITBT) along with internal heating 

effects. In the case of (ITBT), the temperature gradient between the walls of the fluid layer consists of a steady 

part and a time-dependent oscillatory part. The temperature of both walls is modulated in this case. The 

disturbance is expanded in terms of power series of amplitude of convection, which is assumed to be small. It is 

found that the response of the convective system to the internal Rayleigh number is destabilizing. Using 

Ginzburg-Landau equation, the effect of modulations on heat transport is analyzed. Effect of various parameters 

on the heat transport is also discussed. Further, it is found that the heat transport can be controlled by suitably 

adjusting the external parameters of the system. 

 

I. INTRODUCTION 
We know that, controlling convection is 

mainly concerned with space-dependent temperature 

gradients. There are many interesting situations of 

practical importance in which the temperature 

gradient is a function of both space and time. This 

uniform temperature gradient can be determined by 

solving the energy equation with suitable time-

dependent thermal boundary conditions and can be 

used as an effective mechanism to control the 

convective flow. However, in practice, the non-

uniform temperature gradient finds its origin in 

transient heating or cooling at the boundaries. Hence 

the basic temperature profile depends explicitly on 

position and time. This problem, called the thermal 

modulation problem, involves the solution of the 

energy equation under suitable time-dependent 

boundary conditions. Predictions exist for a variety of 

responses to modulation depending on the relative 

strength and rate of forcing. Among these, there is the 

upward or downward shift of convective threshold 

compared to the unmodulated problems. Lot of work 

is available in the literature covering how a time-

periodic boundary temperature affects the onset of 

Rayleigh-Bénard convection. An excellent review 

related to this problem is given by Davis (1976). 

The classical Rayleigh-Bénard convection 

due to bottom heating is well known and highly 

explored phenomenon given by Chandrasekhar 

(1961), Drazin and Reid (2004). Many researchers, 

under different physical models have investigated 

thermal instability in a horizontal fluid layer with 

temperature modulation. Some of them are: Venezian  

 

(1969), was the first to consider the effect of 

temperature modulation on thermal instability in a 

horizontal fluid layer. A similar problem was studied 

earlier by Gershuni and Zhukhovitskii (1963), for a 

temperature profile obeying rectangular law. 

Rosenblat and Herbert (1970), investigated the linear 

stability problem and found an asymptotic solution 

by considering low frequency modulation and free 

free surfaces. Rosenblat and Tanaka (1971), studied 

the linear stability for a fluid in a classical geometry 

of Bénard by considering the temperature modulation 

of rigid-rigid boundaries. The first nonlinear stability 

problem in a horizontal fluid layer, under temperature 

modulation of the boundaries was studied by Roppo 

et al. (1984). Bhadauria and Bhatia (2002), studied 

the effect of temperature modulation on thermal 

instability by considering rigid rigid boundaries and 

different types of temperature profiles. Bhadauria 

(2006), studied the effect of temperature modulation 

under vertical magnetic field by considering rigid 

boundaries. Malashetty and Swamy (2008), 

investigated thermal instability of a heated fluid layer 

subject to both boundary temperature modulation and 

rotation. Bhadauria et al. (2009), studied the non-

linear aspects of thermal instability under 

temperature modulation, considering various 

temperature profiles. Raju and Bhattacharyya (2010), 

investigated onset of thermal instability in a 

horizontal layer of fluid with modulated boundary 

temperatures by considering rigid boundaries. 

Bhadauria et al.(2012) studied thermally or gravity 

modulated non-linear stability problem in a rotating 
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viscous fluid layer, using Ginzburg-Landau equation 

for stationary mode of convection. 

Thompson and Chandrasekhar (1951, 1961), 

were the first to study the magneto-convection in 

horizontal fluid layer. Nakagawa (1955, 1957) and 

Jirlow (1956), found that, vertical magnetic field 

suppresses the onset of convection by using Galerkin 

method. Finlayson (1970), studied the problem of 

magneto-convection in a horizontal layer of magnetic 

fluid which is heated from below and cooled from 

above. Bhatia and Steiner (1973), found that a 

magnetic field has a stabilizing effect on thermal 

instability. Gotoh and Yamada (1982), studied the 

problem of magneto-convection in a horizontal layer 

of magnetic fluid which is heated from below and 

cooled from above and found condition for onset of 

convection. Oreper and Szekely (1983), have found 

that the presence of a magnetic field can suppress 

natural convection currents and that the strength of 

the magnetic field is one of the important factors in 

determining the quality of the crystal. Bajaj and 

Malik (1997, 1998) examined the stability of various 

flow patterns while studying Rayleigh-Bénarsd 

convection in magnetic fluids. The effect of a 

magnetic field on free or natural convection in a 

rectangular enclosure having isothermal and adiabatic 

walls were studied by Garandet et al. (1992), 

Rudraiah et al.(1995) and Al-Najem et al. (1998). 

Siddheshwar and Pranesh (1999, 2000), examined the 

effect of a transverse magnetic field on 

thermal/gravity convection in a weak electrically 

conducting fluid with internal angular momentum. 

Siddheshwar and Pranesh (2002), analyzed the role 

of magnetic field in the inhibition of natural 

convection driven by combined buoyancy and 

surface tension forces in a horizontal layer of an 

electrically conducting Boussinesq fluid with 

suspended particles confined between an upper 

free/adiabatic and a lower rigid/isothermal boundary 

is considered in 1g and μg situations. Kaddeche et al. 

(2003) have investigated the buoyant convection 

induced between infinite horizontal walls by 

horizontal temperature gradient. Bhadauria et al. 

(2008, 2010), also studied the effect of magnetic field 

on thermal modulated convection in the case of 

porous medium. Bhadauria and Sherani (2008, 2010), 

investigated onset of Darcy-convection in a magnetic 

fluid-saturated porous medium subject to temperature 

modulation of the boundaries and magneto-

convection in a porous medium under temperature 

modulation. Siddheshwar et al. (2012) performed a 

local non-linear stability analysis of Rayleigh-Bénard 

magneto-convection using Ginzburg-Landau 

equation. They showed that gravity modulation can 

be used to enhance or diminish the heat transport in 

stationary magneto-convection. 

 

The above studies on thermal instability under 

modulation are made for non-internal heating system. 

However, in many situations of great practical 

importance, it is found that, the material offers its 

own source of heat, and this leads to a different way 

in which a convective flow can be set up through the 

local heat generation within the layer. Such a 

situation can occur through radioactive decay or 

relatively weak exothermic reaction and nuclear 

reaction which can take place within the material. It 

is the main source of energy for celestial bodies 

caused by nuclear fusion and decaying of radioactive 

materials, which keeps the celestial objects warm and 

active. Due to internal heat there exist a thermal 

gradient between the interior and exterior of the 

earth's crust, saturated by multi component fluids, 

which helps convective flow, thereby transforming 

the thermal energy towards the surface of the earth. 

Therefore the role of internal heat generation 

becomes very important in several applications 

including storage of radioactive materials, 

combustion and fire studies, geophysics, reactor 

safety analysis and metal waste form development for 

spent nuclear fuel. However there are very few 

studies available in which the effect of internal 

heating on convective flow in a fluid layer has been 

investigated. They are due to; Roberts (1967), 

Tveitereid and Palm (1976), Tveitereid (1978), Yu 

and Shih (1980), Bhattacharya and Jena (1984), 

Takashima (1989), Tasaka and Takeda (2005), Joshi 

et al.(2006), Bhadauria (2012) and Bhadauria et al. 

(2013). 

Here the first paragraph talks about 

introduction of temperature modulation, second 

paragraph on temperature modulation in a fluid layer, 

third paragraph on magneto-convection and above 

paragraph on the effect of internal heat source on 

thermal convection. Every paragraph has its own 

meaning but, not much modulation work has done in 

the case of magneto-convection. Recently 

Siddheshwar et al. (2012), studied a weakly non-

linear magneto convection under temperature and 

gravity modulation without internal heat source. Due 

to this, in this paper we have investigated internal 

heating effects on magneto-convection under 

temperature modulation. 

 

II. GOVERNING EQUATIONS 
We consider an electrically conducting 

liquid of depth d, confined between two infinite, 

parallel, horizontal planes at z=0 and z=d. Cartesian 

co-ordinates have been taken with the origin at the 

bottom of the liquid layer, and the z-axis vertically 

upwards. The surfaces are maintained at a constant 

gradient /T d and a constant magnetic field ˆ
bH k  is 
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applied across the liquid region (given in Fig.1). 

 
Under the Boussinesq approximation, the 

dimensional governing equations for the study of 

magneto-convection in an electrically conducting 

liquid are: 

0q 


                                                           (1)

0H 


,       (2)   
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where q


is velocity (u, v, w),  Q is internal heat 

source,  fluid viscosity, T is the thermal 

diffusivity, T is temperature, 
T  is thermal expansion 

coefficient,   is the ratio of heat capacities. For 

simplicity of the problem it is considered to be one in 

this paper,   is the density,  

(0,0, g)g  


 is the acceleration due to gravity, 

while 0  is the reference density and H


 magnetic 

field. The exeternally imposed wall temperature 

conditions given by Venezian (1969): 

 2

0 11 cos
2

T
T T t  


    

 at z=0     

 2

0 11 cos
2

T
T t   


     

at z=d      (7) 

where 1 small amplitude of temperature modulation, 

T is the temperature difference across the fluid 

layer,  is modulation frequency and 𝜃 is the phase 

difference. The basic state is assumed to be quiescent 

and the quantities in the state are given by: 

(z)=0,  = (z,t),  p=p ( , ),  = ( , )b b bbq z t T T z t 


           (8) 
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g
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2

02
Q( ),b b

T b

T T
T T

t z


 
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For basic state temperature field given in Eq.(10), has 

been solved subject to the thermal boundary 

conditions (7), and the solution is found to be of the 

form 
2

1 1T (z, t) T ( ) Re{T (z, t)},b s z                 (12) 

where T ( )s z  is the steady temperature field and 
1T  

is the oscillating part, while Re stands for the real 

part. 

We impose finite amplitude perturbations on the 

basic state in the form: 

+ ', = + ',  p=p +p', = + 'b b b bq q q T T T  
 

         (13) 

Substituting Eq.(13) into Eqs.(1) - (6) and using the 

basic state results, we get the following equations 

0 q

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
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0H
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 ,                             (15) 

2
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Further we consider only two dimensional 

disturbances in our study and hence the stream 

function   and magnetic potential   are 

introduced as ( , ) ,u w
z x

   
    

  
 and

( , ) ,x zH H
z x

  
    

  

 
. We eliminate density and 

presser terms from the Eqs.(16-19), and the resulting 

system nondimensionalized using the following 

transformations: 
2

* * * *( , , ) ( , y ,z ),  t =
T

d
x y z d x t


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* ' 'Tq q
d


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*

2

T

d


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bdH 


, we get the non-

dimensional governing equations in the form:      
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Here the non-dimensionalizing parameters 

in the above equations are given in Nomenclature. 

Equation (21) shows that, the basic state solution 

influences the stability problem through the factor 

/bT z  which is given by: 

2
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To keep the time variation slow, we have 

rescaled the time t by using the time scale
2 t  . 

Here, we study only stationary solution, therefore 

overstable solutions are not considered. Now, to 

study the stationary convection, we write the non-

linear Eqs.(20)-(22) in the matrix form as given 

below: 
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equation (26) are: 
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III. FINITE AMPLITUDE EQUATION 

AND HEAT TRANSPORT FOR 

STATIONARY INSTABILITY 
We introduce the following asymptotic 

expansion in Eq.(26): 
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0cR  is the critical Rayleigh number at which 

the onset of convection takes place in the absence of 

modulation. Now substituting Eqn (28) we solve the 

system Eq.(26) for different orders of  . At the first 
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The solution of the lowest order system subject to the 

boundary conditions Eq.(27), is 
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convection is calculated numerically, and the 
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At the second order, we have: 
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The second order solutions subjected to the boundary 

conditions Eq. (27) is obtained as follows: 

 

2 0  ,                                                                   (38) 

3 2
2

2 2 2 2

2
( )sin(2 ),

(4 )

c

R i

k
T A z

R


 

 
 


        (39) 

( ) [ ( ) ( ) ],mz mzf z A m e A m e  



Palle Kiran et al Int. Journal of Engineering Research and Applications                       www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.200-208 

 

 
www.ijera.com                                                                                                                                204 | P a g e  

2
2

2 2 2
( )sin(2 x).

8
c

c

A k
k Pm





           (40) 

The horizontally-averaged Nusselt number 

Nu, for the stationary mode of convection is given 

by: 
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4 2

2
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8 sin
( ) 1 ( ).
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k R
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R R R


 

 
 

 
            

                                                                               (42) 

We must note here that 
2f  is effective at 2( )O   and 

affects Nu(τ) through ( )A   as in Eq.(42). 

At the third order, we have 

4 2

0

3 31

2

1 3 32

3 33
2

( ) 0

0

c

i

R QPm
x z R

f R T R
x

R

Pm
z
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        

    
           
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    (43) 

where 
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33R

x z
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Substituting 
1 ,

1T , 
1 and 

2  into Eqs.(44)-(46), 

and applying the solvability condition for the 

existence of the third order solution, we get the 

Ginzburg-Landau equation in the form 

3

1 2 3

( )
( ) ( ) 0

A
A A A A A


 




  


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2

1 2
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
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It may be difficult to get the analytic 

solution of the above Ginzburg-Landau equation (47) 

due to its non-autonomous nature, therefore, it has 

been solved numerically using the inbuilt function 

NDSolve of Mathmatica 8.0, subject to the suitable 

initial condition B(0) = a0, where a0 is the chosen 

initial amplitude of convection. In our calculations 

we may assume
2 0cR R  to keep the parameters to 

the minimum 

 

IV. RESULTS AND DISCUSSION 
In this paper, the combined effect of internal 

heating and temperature modulation on thermal 

instability in a electrically conducting fluid layer. A 

weakly non-linear stability analysis has been 

performed to investigate the effect of temperature 

modulation on heat transport. The effect of 

temperature modulation on the Rayleigh-Bénard 

system has been assumed to be of order 2( )O  . This 

means, we consider only small amplitude temperature 

modulation. Such an assumption will help us in 

obtaining the amplitude equation of convection in a 

rather simple and elegant manner and is much easier 

to obtain than in the case of the Lorenz model. 

 
 

We give the following features of the 

problem before our results: In the basic state, heat 

transport is by conduction alone. We consider the 
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following three types of temperature modulation on 

magneto-convection: 

1.  In-phase modulation (IPM) (θ =0), 

2.  Out-of-phase modulation (OPM) (θ=л) and 

3.  Modulation of only the lower boundary 

(LBMO) (θ=-i∞). 

In this case the modulation effect will not be 

considered in the upper boundary, but only in the 

lower boundary. The parameters that arise in the 

problem are Q, Pr, Pm, 
iR , θ, δ1, ω these parameters 

influence the convective heat and mass transfer. The 

first five parameters related to the fluid layer, and the 

last three concern the external mechanisms of 

controlling convection.  

 
 

The effect of temperature modulation is 

represented by amplitude δ1 which lies around 0.3. 

The effect of electrical conductivity and magnetic 

field comes through Pm, Q. There is the property of 

the fluid coming into picture as well as through 

Prandtl number Pr. Further, the modulation of the 

boundary temperature assumed to be of low 

frequency. At low range of frequencies the effect of 

frequency on onset of convection as well as on heat 

transport is minimal. This assumption is required in 

order to ensure that the system does not pick up 

oscillatory convective mode at onset due to 

modulation in a situation that is conductive otherwise 

to stationary mode. It is important at this stage to 

consider the effect of Q, Pr, Pm, 
iR , θ, δ1, ω on the 

onset of convection. The heat transfer quantified by 

the Nusselt numbers which is given in Eq.(42). The 

figures (2-4) show that, the individual effect of each 

non-dimensional parameter on heat transfer. 

1. The Chandrasekhar number Q which is ratio of 

Lorentz force to viscous force where, the force 

exerted on a charged particle moving with 

velocity through an electric and magnetic field. 

The entire electromagnetic force on the charged 

particle is called the Lorentz force. As Q 

increases Lorentz force dominates viscous forces 

and the result is to delay the onset of convection, 

hence heat transfer. The Nusselt number Nu 

starts with one by showing conduction state, and 

for small values of time τ increases and becomes 

constant for large values of time τ in the case of 

(IPM) given in (2a). In the case of (OPM 3a, 

LBMO 4a) the effect of Q shows oscillatory 

behavior and increment in Q decreases the 

magnitude of Nu. Hence Q has stabilizing effect 

in all the three types of modulations so that heat 

transfer decrease with Q. 

2. The effect of internal Rayleigh number 
iR  is to 

increase Nu so that heat transfer. Hence it has 

destabilizing effect in all the three types of 

modulations which is given by the figures (2b, 

3b, 4b). 

3. In OPM case an increment in Prandtl number Pr 

for slow time scale there is sudden increment in 

Nu which shows advances of convection and 

hence heat transfer, but, for large values of time 

study sate. An oscillatory behavior obtained in 

the case of (OPM 3c, LBMO 4c). 

4. The effect of Magnetic Prandtl Pm numbers is to 

advances the convection and heat transfer. Hence 

Pm has destabilizing effect of the system given 

in figures (2d) IPM case. In the case of (OPM 

3d, LBMO 4d) the effect of Pm shows 

oscillatory behavior and increment in Pm 

increases the magnitude of Nu. Hence Pm has 

destabilizing effect hence heat transfer. 

5. In the case of (IPM) we observe that no effect of 

amplitude δ1, and frequency ω of modulation 

which is given by the figure (2e). But in the case 

of (OPM 3e, LBMO 4e) the increment in δ1, 

leads to increment in magnitude of Nu hence 

heat transfer. The increment in ω shortens the 

wavelength but no effect in magnitude so we are 

not presenting here as figure. 

6. The comparison of three types of temperature 

modulations given in figure (4f). 

[ ] [ ] [ ] .IPM LBMO OPMNu Nu Nu   

 

V. CONCLUSIONS 
The effects of temperature modulation and 

internal heating on Rayleigh-Bénard convection in an 

electrically conducting fluid layer have been 
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analyzed by performing a weakly nonlinear stability 

analysis resulting in the real Ginzburg-Landau 

amplitude equation. The following conclusions are 

drawn:  

 
 

1. The effect of IPM is negligible on heat transport 

in the system. 

2. In the case of IPM, the effect of δ1 and ω are also 

found to be negligible on heat transport. 

3. In the case of IPM, the values of Nu increase 

steadily for small values of time τ, however 

become constant when τ is large. 

4. The effect of increasing Pr, Pm, 
iR  is found to 

increase in Nu thus increasing heat transfer for 

all three types of modulations. 

5. The effect of increasing δ1 is to increase the 

value of Nu for the case of OPM and LBMO, 

hence heat transfer. 

6. The effect of increasing ω is to decrease the 

value of Nu for the case of OPM and LBMO, 

hence heat transfer. 

7. In the cases of OPM and LBMO, the nature of 

Nu remains oscillatory. 

8. Initially when τ is small, the values of Nusselt 

number start with 1, corresponding to the 

conduction state. However as τ increases, Nu 

also increase, thus increasing the heat transfer. 

9. The values of Nu for LBMO are greater than 

those in IPM but smaller than those in OPM. 

10. The effect of magnetic field is to stabilize the 

system. 
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Nomenclature              Greek Symbols 

Latin Symbols 

A              Amplitude of convection     
T               Coefficient of thermal expansion 

1             Amplitude of Temperature modulation                      
m               Magnetic viscosity  

d               Depth of the fluid layer                                  
2               Square of horizontal wave number 

g


             Acceleration due to gravity                       Perturbation parameter 

                                                 
T               Effective thermal diffusivity 

kc              Critical wave number                                ω         Frequency of modulation 

Nu             Nusselt number               Dynamic viscosity of the fluid 

p                Reduced pressure      
m              Magnetic permeability 

Ri              Internal heat source parameter Ri = 2 / TQd                                 Kinematic viscosity,
 

TRa          Thermal Rayleigh number, 
3

T
T

T

g Td
Ra






                                            Fluid density 

0cR            Critical Rayleigh number                      Stream function 

T               Temperature                                                      Magnetic potential  

Pr            Prandtl number Pr
T




                 Slow time 

Pm            Magnetic Prandtl number m

T

Pm



     T           Perturbed temperature 

T           Temperature difference across the fluid layer                      Phase angle 

 t                Time         Other symbol 

(x; z)          Horizontal and vertical co-ordinates     
2         

2 2 2

x y z

  
 

  
 

           Subscripts 
        b                   Basic state 

c        Critical 

0        Reference value  

   Subscripts 

‘                   Perturbed quantity 

*       Dimensionless quantity 

     

 


